452 Chapter 16 | Gene Expression Figure 16.14 Proteins with ubiquitin tags are marked for degradation within the proteasome. # 16.7 | Cancer and Gene Regulation By the end of this section, you will be able to do the following: - · Describe how changes to gene expression can cause cancer - · Explain how changes to gene expression at different levels can disrupt the cell cycle - Discuss how understanding regulation of gene expression can lead to better drug design. Cancer is not a single disease but includes many different diseases. In cancer cells, mutations modify cell-cycle control and cells don't stop growing as they normally would. Mutations can also alter the growth rate or the progression of the cell through the cell cycle. One example of a gene modification that alters the growth rate is increased phosphorylation of cyclin B, a protein that controls the progression of a cell through the cell cycle and serves as a cell-cycle checkpoint protein. For cells to move through each phase of the cell cycle, the cell must pass through checkpoints. This ensures that the cell has properly completed the step and has not encountered any mutation that will alter its function. Many proteins, including cyclin B, control these checkpoints. The phosphorylation of cyclin B, a post-translational event, alters its function. As a result, cells can progress through the cell cycle unimpeded, even if mutations exist in the cell and its growth should be terminated. This post-translational change of cyclin B prevents it from controlling the cell cycle and contributes to the development of cancer. # **Cancer: Disease of Altered Gene Expression** Cancer can be described as a disease of altered gene expression. There are many proteins that are turned on or off (gene activation or gene silencing) that dramatically alter the overall activity of the cell. A gene that is not normally expressed in that cell can be switched on and expressed at high levels. This can be the result of gene mutation or changes in gene regulation (epigenetic, transcription, post-transcription, translation, or post-translation). Changes in epigenetic regulation, transcription, RNA stability, protein translation, and post-translational control can be detected in cancer. While these changes don't occur simultaneously in one cancer, changes at each of these levels can be detected when observing cancer at different sites in different individuals. Therefore, changes in **histone acetylation** (epigenetic modification that leads to gene silencing), activation of transcription factors by phosphorylation, increased RNA stability, increased translational control, and protein modification can all be detected at some point in various cancer cells. Scientists are working to understand the common changes that give rise to certain types of cancer or how a modification might be exploited to destroy a tumor cell. #### Tumor Suppressor Genes, Oncogenes, and Cancer In normal cells, some genes function to prevent excess, inappropriate cell growth. These are tumor-suppressor genes, which are active in normal cells to prevent uncontrolled cell growth. There are many tumor-suppressor genes in cells. The most studied tumor-suppressor gene is p53, which is mutated in over 50 percent of all cancer types. The p53 protein itself functions as a transcription factor. It can bind to sites in the promoters of genes to initiate transcription. Therefore, the mutation of p53 in cancer will dramatically alter the transcriptional activity of its target genes. Chapter 16 | Gene Expression 453 Watch this animation (http://openstaxcollege.org/l/p53_cancer) to learn more about the use of p53 in fighting cancer. Proto-oncogenes are positive cell-cycle regulators. When mutated, proto-oncogenes can become oncogenes and cause cancer. Overexpression of the oncogene can lead to uncontrolled cell growth. This is because oncogenes can alter transcriptional activity, stability, or protein translation of another gene that directly or indirectly controls cell growth. An example of an oncogene involved in cancer is a protein called myc. **Myc** is a transcription factor that is aberrantly activated in Burkett's Lymphoma, a cancer of the lymph system. Overexpression of myc transforms normal B cells into cancerous cells that continue to grow uncontrollably. High B-cell numbers can result in tumors that can interfere with normal bodily function. Patients with Burkett's lymphoma can develop tumors on their jaw or in their mouth that interfere with the ability to eat. ### **Cancer and Epigenetic Alterations** Silencing genes through epigenetic mechanisms is also very common in cancer cells. There are characteristic modifications to histone proteins and DNA that are associated with silenced genes. In cancer cells, the DNA in the promoter region of silenced genes is methylated on cytosine DNA residues in CpG islands. Histone proteins that surround that region lack the acetylation modification that is present when the genes are expressed in normal cells. This combination of DNA methylation and histone deacetylation (epigenetic modifications that lead to gene silencing) is commonly found in cancer. When these modifications occur, the gene present in that chromosomal region is silenced. Increasingly, scientists understand how epigenetic changes are altered in cancer. Because these changes are temporary and can be reversed—for example, by preventing the action of the histone deacetylase protein that removes acetyl groups, or by DNA methyl transferase enzymes that add methyl groups to cytosines in DNA—it is possible to design new drugs and new therapies to take advantage of the reversible nature of these processes. Indeed, many researchers are testing how a silenced gene can be switched back on in a cancer cell to help re-establish normal growth patterns. Genes involved in the development of many other illnesses, ranging from allergies to inflammation to autism, are thought to be regulated by epigenetic mechanisms. As our knowledge of how genes are controlled deepens, new ways to treat diseases like cancer will emerge. ## **Cancer and Transcriptional Control** Alterations in cells that give rise to cancer can affect the transcriptional control of gene expression. Mutations that activate transcription factors, such as increased phosphorylation, can increase the binding of a transcription factor to its binding site in a promoter. This could lead to increased transcriptional activation of that gene that results in modified cell growth. Alternatively, a mutation in the DNA of a promoter or enhancer region can increase the binding ability of a transcription factor. This could also lead to the increased transcription and aberrant gene expression that is seen in cancer cells. Researchers have been investigating how to control the transcriptional activation of gene expression in cancer. Identifying how a transcription factor binds, or a pathway that activates where a gene can be turned off, has led to new drugs and new ways to treat cancer. In breast cancer, for example, many proteins are overexpressed. This can lead to increased phosphorylation of key transcription factors that increase transcription. One such example is the overexpression of the epidermal growth-factor receptor (EGFR) in a subset of breast cancers. The EGFR pathway activates many protein kinases that, in turn, activate many transcription factors which control genes involved in cell growth. New drugs that prevent the activation of EGFR have been developed and are used to treat these cancers. # **Cancer and Post-transcriptional Control** Changes in the post-transcriptional control of a gene can also result in cancer. Recently, several groups of researchers have shown that specific cancers have altered expression of miRNAs. Because miRNAs bind to the 3' UTR of RNA molecules to degrade them, overexpression of these miRNAs could be detrimental to normal cellular activity. Too many miRNAs could dramatically decrease the RNA population, leading to a decrease in protein expression. Several studies have demonstrated a change in the miRNA population in specific cancer types. It appears that the subset of miRNAs expressed in breast cancer cells is quite different from the subset expressed in lung cancer cells or even from normal breast cells. This suggests that alterations in miRNA activity can contribute to the growth of breast cancer cells. These types of studies also suggest that if some miRNAs are specifically expressed only in cancer cells, they could be potential drug targets. It would, therefore, be conceivable that new drugs that turn off miRNA expression in cancer could be an effective method to treat cancer. ### Cancer and Translational/Post-translational Control There are many examples of how translational or post-translational modifications of proteins arise in cancer. Modifications are found in cancer cells from the increased translation of a protein to changes in protein phosphorylation to alternative splice variants of a protein. An example of how the expression of an alternative form of a protein can have dramatically different outcomes is seen in colon cancer cells. The c-Flip protein, a protein involved in mediating the cell-death pathway, comes in two forms: long (c-FLIPL) and short (c-FLIPS). Both forms appear to be involved in initiating controlled cell-death mechanisms in normal cells. However, in colon cancer cells, expression of the long form results in increased cell growth instead of cell death. Clearly, the expression of the wrong protein dramatically alters cell function and contributes to the development of cancer. ### **New Drugs to Combat Cancer: Targeted Therapies** Scientists are using what is known about the regulation of gene expression in disease states, including cancer, to develop new ways to treat and prevent disease development. Many scientists are designing drugs on the basis of the gene expression patterns within individual tumors. This idea, that therapy and medicines can be tailored to an individual, has given rise to the field of personalized medicine. With an increased understanding of gene regulation and gene function, medicines can be designed to specifically target diseased cells without harming healthy cells. Some new medicines, called targeted therapies, have exploited the overexpression of a specific protein or the mutation of a gene to develop a new medication to treat disease. One such example is the use of anti-EGF receptor medications to treat the subset of breast cancer tumors that have very high levels of the EGF protein. Undoubtedly, more targeted therapies will be developed as scientists learn more about how gene expression changes can cause cancer. ### **Clinical Trial Coordinator** A clinical trial coordinator is the person managing the proceedings of the clinical trial. This job includes coordinating patient schedules and appointments, maintaining detailed notes, building the database to track patients (especially for long-term follow-up studies), ensuring proper documentation has been acquired and accepted, and working with the nurses and doctors to facilitate the trial and publication of the results. A clinical trial coordinator may have a science background, like a nursing degree, or other certification. People who have worked in science labs or in clinical offices are also qualified to become a clinical trial coordinator. These jobs are generally in hospitals; however, some clinics and doctor's offices also conduct clinical trials and may hire a coordinator. Chapter 16 | Gene Expression 455 #### **KEY TERMS** 3' UTR 3' untranslated region; region just downstream of the protein-coding region in an RNA molecule that is not translated **5' cap** a methylated guanosine triphosphate (GTP) molecule that is attached to the 5' end of a messenger RNA to protect the end from degradation 5' UTR 5' untranslated region; region just upstream of the protein-coding region in an RNA molecule that is not translated activator protein that binds to prokaryotic operators to increase transcription **catabolite activator protein (CAP)** protein that complexes with cAMP to bind to the promoter sequences of operons which control sugar processing when glucose is not available cis-acting element transcription factor binding sites within the promoter that regulate the transcription of a gene adjacent to it Dicer enzyme that chops the pre-miRNA into the mature form of the miRNA **DNA methylation** epigenetic modification that leads to gene silencing; a process involving adding a methyl group to the DNA molecule **enhancer** segment of DNA that is upstream, downstream, perhaps thousands of nucleotides away, or on another chromosome that influence the transcription of a specific gene epigenetic heritable changes that do not involve changes in the DNA sequence eukaryotic initiation factor-2 (eIF-2) protein that binds first to an mRNA to initiate translation gene expression processes that control the turning on or turning off of a gene guanine diphosphate (GDP) molecule that is left after the energy is used to start translation guanine triphosphate (GTP) energy-providing molecule that binds to eIF-2 and is needed for translation **histone acetylation** epigenetic modification that leads to gene silencing; a process involving adding or removing an acetyl functional group inducible operon operon that can be activated or repressed depending on cellular needs and the surrounding environment initiation complex protein complex containing eIF-2 that starts translation lac operon operon in prokaryotic cells that encodes genes required for processing and intake of lactose large 60S ribosomal subunit second, larger ribosomal subunit that binds to the RNA to translate it into protein microRNA (miRNA) small RNA molecules (approximately 21 nucleotides in length) that bind to RNA molecules to degrade them myc oncogene that causes cancer in many cancer cells negative regulator protein that prevents transcription **operator** region of DNA outside of the promoter region that binds activators or repressors that control gene expression in prokaryotic cells **operon** collection of genes involved in a pathway that are transcribed together as a single mRNA in prokaryotic poly-A tail a series of adenine nucleotides that are attached to the 3' end of an mRNA to protect the end from